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A superheated crystal is thermodynamically stable with respect to small internal perturbations. Experimentally,
however, superheating is difficult to achieve because of the serious disturbance of the thermodynamic state of the crys-
tal originaring at the surface (which, as a rule, is wetted by the liquid phase of the same substance [1, 2]). This dis-
turbance, of course, cannot be eliminated, however slow the rate of heating. Superheating is possible only under dy-
namic conditions — when the heating time is less than the time required to establish phase equilibrium. In principle,
this condition can be fulfilled by rapid volume hear release, for example, in shock compression,

Let us consider the melting time for a rapidly heated polycrystalline solid. It is assumed that the melting point T,
and the heat of fusion q do not change in the process of establishing phase equilibrium, which, generally speaking, holds
true only at constant pressure.

In the relaxation zone of the phase transition in a shock wave the pressure P changes by a certain quantity AP,
which, however, usually satisfies the condition PYAP «1 (an exception is the case when the shock adiabat and the

melting point curve intersect at a small angle). The change in T, is then of the order [3]:
AT, n—1 AP AT, Ag
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Here it has been assumed that n > 1 and 7 ~ 10%-10° atm. Hence, in solving the heat conduction equation we may
assume that T = < T_> and q=< q>, where < T, > and < q > are the mean values of T, and q in the relaxation

zone.

The second assumption is that only the surfaces of the monocrystals are centers of fusion. This assumption does not
limit the generality of the treatment, if the monocrystals are small enough for the process of melting to conclude before
liquid phase nuclei can form in the interior of the monocrystal,

However, since the kinetics of volume nucleation and the quantitative criterion of crystal smallness in the above-
mentioned sense are not considered here, the estimate obtained below should be regarded as an estimate of the upper
limit of the melting time 7 for monocrystals of arbitrary size, The processes taking place at the melting surface can
be assumed inertialess® within certain limits of superheating, as long as the rate of fusion is limited by the thermal con-
ductivity. The limits of applicability of this treatment will be considered later.

If the intensity of the shock wave is sufficient to melt only a small portion of the monocrystal, then the location of
the surface of the solid phase during the process of melting can be assumed fixed, and 7 is determined by the time for
equalization of the temperature T of the monocrystal, whose surface is maintained at T =T _, while the initial tem-
perature Tg > T,. The temperature equilization time, which depends on the shape of the monocrystal, is of the

order
T 04a) % (1)

(for example, for a spherical or cubic shape [5]1). Here a is the linear dimension of the monocrystal, » is the thermal

diffusicity. According to (1)the width of the relaxation zone of a shock wave with a mass velocity U relative to the
front is ~ 0.1 U a®/n .

At larger shock wave intensities, the melting process may be significantly accelerated owing to displacement of the
monocrystal boundary. In order to estimate the melting time in this case, let us consider the auxiliary one-dimensional
problem of the melting of a semi-infinite medium having an initial temperature Ty independent of the coordinate x and
a moving plane boundary x;, at which the temperature T_ is given. The position of the boundary x is determined by the
quantity of heat necessary for melting reaching x, from the region of the solid phase.

The mathematical formulation of the problem consists in the following? it is required to solve the equation of heat

conductions

oT T
At = ® o (2)

*Cases involving the anomalously slow kinetics of surface melting, characteristic of substances whose liquid phase
is vitreous and distinguished by its extremely high viscosity, are an exception, Such substances may be considerably
superheated by a heat flux from the surface [4].
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with the initial conditions T {x, 0) = Ty =const > T,, x > 0, T(0, 0)= T, and a boundary condltmn(conservatlon of

quantity of heat during melting) that may be conveniently represented in mtegral forms
co g

qxllec(To—T*)+cS (To—T)dx (3)
X1
where ¢ is the specific heat of the crystal, *

From the parameters of the problem and the variables x and t it is possible to construct only one independent dimen-
sionless variable y = x (2nt) 172 on which depends the:dimensionless "temperature”

T-—T,
E=ET—T,
In dimensionless quantities Eq. (2) becomes
2" +yz'=0. » (4)
The solution of Eq. (4)1is the integral
v . )
1=4 S ST =g =0 0<Sy<w) <;1‘=g eV dy ) - )
Yi Y1

In determining A it was assumed, thatz =1 wheny = «,

The constant of integration yy is determined by condition (3), which in dimensionless quantities has the form
[o0]

q .
— ) == — = 6
no—=\ a2 a ==t ) )
Y1
In the general case y, is calculated from (5) and (6), which contain tabulated integrals, However, for yy > 1, the

calculations can be carried to completion directly. It will be seen subsequently [formula (8)] that y; > 1 corresponds
to almost complete melting 0 < b — 1 « 1, assuming that y; > 1, we find

O'O - e—l/zyxz 4 Ly —1/27121 e—‘/zy”
Y g \ T g - : .
S ey g T Ty v (7)
Y1 Y1
gl — _@;_,1_ gl Wit-u) (> 1)
Substituting (7) in (6), we obtain
o
dy 1 , c(To—T,) 7
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y (b~ =e ye y V) n=0—1 =TTy ) )
1

Reverting to the original variables, for the time for the liquid phase boundary to move from 0 to xy we get:

:tlz $12 q—C(To——T*) x12‘ I:d . C(To——T*) j[

VT G 2w c(lo—Tg) ~ 2n q 9)

in accordance with (8) and yy > 1,

It follows from(7)that for y > y,, T differs significantly from T, over the interval Ay ~ 1/yy, i.e., over the in-
terval &x ~ x1/y12. Thus, for y; > 1 the volume of unmelted substance disturbed by thermal motion is small compared
with the volume of liquid. For this reason the solution of the one -dimensional problem of the melting of a semi-infinite
medium is applicable, to a good approximation, to the three-dimensional case of melting of a body of finite size. The
melting time is then given by the formula

rz(-g—)zfa;[1~c—@°—§&)—]zo.1i‘;—[1_c—@#fl] (10)

obtained from Eq. (9) by replacing x4 by a/2 (since when yy > 1 the intensity of the shock wave is sufficient for melt-
ing to be almost complete).

Formula (10), obtained for y; > 1, formally coincides with (1) when b~ « 1, i.e., for a wave intensity leading to
only slight melting of the crystal. Thus, (10) correctly describes the limiting cases of slight and almost total fusion.

*This problem is analogous to the problem of freezing [6], if the supercooled state of the liquid is considered.
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In the intermediate region of shock wave intensities, equation (10) must be regarded as an interpolation. Further re-
finement of (10) would make sense only if the variety of size and shape of the monocrystals were taken into account,

Formula (10) reduces to 7 = 0 for c(Ty ~ T;) = q. Under these conditions, melting at the surface will proceed with-
out heat being supplied. The rate of melting, however, will be limited by the activation time, not considered in this
model, which, at the temperatures in question (T — T,) =~ g/c, is of the order of 10 periods of vibration of a lattice
point (the settled lifetime of a liquid molecule). This implies that the velocity of the phase boundary for ¢(Ty = T,) =
~ q is of the order of 0.1 times the speed of sound. In a polycrystalline solid the relaxation zone of a shock wave, whose
intensity is sufficient for toral melting of the substance, thus has a width of abour 10a or less. (If, as a result of melting,
a two-wave configuration is formed, then this relates to the structure of the second wave. The two-wave configurarion
as a whole will not be stationary, and there is no limit on its width.)

In conclusion, it should be emphasized again that the above discussion relates to the upper limit of the melting
time. Actually, for ¢(Ty — T,) & q the melting time may be considerably less, since with such strong heating the
state of the crystal may be close to the border of lability, (Molten metals have been supercooled [7] by AT % 0.2 T,.

In view of the well-known symmetry of the processes of superheating and supercooling, we may expect superheating of
the same order under conditions that exclude the surface effect. Then, however, the nuclei of the new phase still con-
tain hundreds of molecules [7]. The time for these nuclei to develop [1] under shock melting conditions cannot be con-
sidered infinitely small.” For this reason, shock melting may be nonhomogeneous even for a large degree of superheat -
ing.) A second factor, which may accelerate the process of melting, is the possible instability of the plane boundary of
a superheated crystal, similar to dendritic solidification of a supercooled liquid [7].
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