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A superheated crystal is thermodynamical ly  stable with respect to small  internal perturbations. Experimentally,  
however, superheating is difficult to achieve because of the serious disturbance of the thermodynamic state of the crys- 
tal  originating at the surface (which, as a rule, is wetted by tile liquid phase of the same substance [1, 2]). This dis-  
turbance, of course, cannot be e l iminated ,  however slow the rate of heating.  Superheating is possible only under dy-  
namic  conditions - when the heating t ime  is less than the t ime required to establish phase equil ibr ium. In principle,  
this condition can be fulfi l led by rapid volume heat release,  for example ,  in shock compression. 

Let us consider the melt ing t ime  for a rapidly heated polycrystall ine solid. It is assumed that the melt ing point T ,  
and the heat  of fusion q do not change in the process of establishing phaseequi l ibr ium,  which, general ly speaking, holds 
true only at constant pressure. 

In the re laxat ion zone of the phase transition in a shock wave the pressure P changes b y  a certain quantity /XP, 
which, however, usually satisfies the condition P-!  Ap << 1 (an exception is the case when the shock adiabat  and the 
melt ing point curve intersect at a small  angle).  The change in T .  is then of the order [3]: 

AT,  n - - t  AP k f .  Aq 
T ,  ~ P @ g  or ~ - .  - ~ t ,  - ~ - ~ ' 1 .  

Here it has been assumed that n > 1 and 7r ~ 104-105 atm. Hence, in solving the heat conduction equation we may 
assume that T , =  < T ,  > and q = <  q > ,  where < T ,  > and < q > are the mean values of T, and q in the relaxat ion 
zone. 

The second assumption is that only the surfaces of the monocrystals are centers of fusion. This assumption does not 
l imi t  the general i ty  of the t rea tment ,  if the monocrystals are small  enough for the process of inching to conclude before 
liquid phase nuclei  can form in the interior of the monocrystal .  

However, since the kinetics of volume nucleat ion and the quanti tat ive criterion of crystal smallness in the above-  
mentioned sense are not considered here,  the es t imate  obtained below should be regarded at an est imate of the upper 
l imi t  of the melt ing t ime  ~- for monocrystals of arbitrary size. The processes taking place at the mel t ing surface can 

be assumed inertialess* within certain l imits of superheating, as long as tile rate of fusion is l imited by the thermat  con- 
duct ivi ty.  The limits of appl icabi l i ty  of this t reatment  will be considered later .  

If the intensity of the shock wave is sufficient to melt  only a small  portion of the monocrystal ,  then the locat ion of 
the surface of the solid phase during the process of mel t ing can be assumed fixed, and ~- is determined by the t ime  for 
equal izat ion of the temperature  T of the monocrystal ,  whose surface is maintained at T = T , ,  while the in i t ia l  t e m -  
perature T o > T . .  The tempera ture  equi l izat ion t ime ,  which depends on the shape of the monocrystal ,  is of the 
order 

�9 ~ 0 . t  a2 /~  (1) 

(for example ,  for a spherical  or cubic shape [5]).  Here a is the l inear dimension of the monocrystal ,  z is the thermal  

diffusicity.  According to ( 1 ) t h e  width of the re laxat ion zone of a shock wave with a mass veloci ty  U re la t ive  to the 
front is ~ 0.1 U aZ/x .  

At larger shock wave intensities,  the mel t ing process may be significantly acce lera ted  owing to displacement  of the 

monocrystal  boundary. In order to es t imate  the mel t ing t ime  in this case, let us consider the auxil iary one-dimensional  
problem of the reek ing  of a semi- inf in i te  medium having an in i t ia l  tempera ture  T 0 independent of the coordinate x and 
a moving plane boundary x 1, at which the temperature  T , . i s  given. The position of the boundary x is determined by the 
quantity of heat necessary for mel t ing reaching x I from the region of the solid phase. 

The ma thema t i ca l  formulation of the problem consists in the following: it is required to solve the equation of heat  
conduction: 

OT O~T 
Ot - -  • Ox ~ ( 2 )  

*Cases involving the anomalously slow kinetics of surface mel t ing ,  character is t ic  of substances whose liquid phase 
is vitreous and distinguished by its ex t remely  high viscosity, are an exception.  Such substances may  be considerably 
superheated by a heat  flux from the surface [4]. 
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with the ini t ia l  conditions T (x, 0) = To = const > T,, x > 0, T(O, O) = T, and a boundary condition(conservation of 
quantity of heat during melting) that may be conveniently represented in integral formi 

oo 

qxi = xlc (To - -  T , )  + c I (To--  T) dx (3) 
Xl 

where c is the specific heat of the crystal. * 

From the parameters of the problem and the variables x and t it is possible to construct only one independent d imen-  
sionless variable y = x (2"xt) "1/2 , on which depends thedimensionless "temperature" 

In dimensionless quantities Eq. (2)becomes 

T - - T ,  
z -- To -- T, " 

z " + y z ' = O .  (4) 
The solution of gq, (4) is the integral 

?! 

z ---- A t e-g2 r* dr (y ~ yi); z = 0 
Yl 

In determining A it was assumed, that z = 1 when y = ~o. 

?h 

The constant of integration Yl is determined by condition (3), which in dimensionless quantities has the form 
0o 

y i ( b - - l ) =  ( t ~ z )  dy b =  c ( r o - - T , )  " 
Y~ 

In the general case Yl is calculated from (5) and (6), which contain tabulated integrals. However, for Yl >> 1, the 

calculations can be carried to completion directly. It will be seen subsequently [formula (8)] that Yl >> 1 corresponds 
to almost complete melt ing 0 < b - 1 << 1, assuming that Yl >> 1, we find 

co e-~/2Y~2 i e-V~?~% e-l/~Y~ 
I e - V 2 Y 2 d y ~ -  e -~/~r~ dr .... 

yi ' Yi y , 
Yl Y l  

z .~ t - -  Y__L eV~ (y~'-~?) (y ~ yl) �9 
Y 

(7) 

Substituting (7) in (6), we obtain 
(20 

yi(b_l)~.~yieV, y~ l e_V~y, dy i y y i  y~ = ( b - -  t )  - v '  - -  [ c ( T o - -  T , )  7 
' -- L q - L c ~ T ~ - ~ , )  j �9 (8) 

Ya 

Reverting to the original variables, for the t ime for the liquid phase boundary to move from 0 to x I we get: 

x~ 2 xl 2 q - - c ( T o - - T , )  x~2"[ c ( T o - - T , )  ] 
vi ~ 2xyi ~ - -  2u c (To - -  T,)  "~ 2--~- t q (9) 

in accordance with (8) and Yl >> 1. 

!t followsfrom(7)that  for y > Yl, T differs significantly from T O over the interval ~y ,~ I / y l ,  i . e . ,  over the in -  

terval Ax ~ x l /y l  2. Thus, for Yl >> I the volume of unmelted substance disturbed by thermal motion is small compared 

with the volume of liquid. For this reason the solution of the one-dimensional  problem of the melt ing of a semi- inf in i te  

medium is applicable,  to a good approximation, to the three-dimensional  case of melt ing of a body of finite size. The 
mel t ing t ime is then given by the formula 

( + ) 2  t [ c(To--T,) ] a2 [ c(To--T,) ] 
, ~  ~ I q ~0.1--~-  i (10) 

q 

obtained from Eq. (9) by replacing x I by a/2  (since when Yl >> 1 the intensity of the shock wave is sufficient for mel t -  

ing to be almost complete).  

Formula (10), obtained for Yl >> 1, formally coincides with (1) when b -i << 1, i . e . ,  for a wave intensity leading to 

only slight melt ing of the crystal. Thus, (10) correctly describes the l imiting cases of slight and almost total fusion. 

* This problem is analogous to the problem of freezing [6], if the supercooled state of the liquid is considered. 
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In the intermediate  region of shock wave intensities, equation ( !0)  must be regarded as an interpolation. Further re-  

finement of (10) would make sense only if the variety of size and shape of the monocrystals were taken into account.  

Formula (10) reduces to r = 0 for c(T0 -- T,,) - q. Under these conditions, melt ing at the surface will proceed with- 
out heat being supplied. The rate  of meIting,  however, will be l imited by the activation t ime ,  not considered in this 
model,  which, at the temperatures in question (T -- T,) ~ q /c ,  is of the order of 10 periods of vibration of a la t t ice  
point (the settled l i fe t ime of a liquid molecule) .  This implies that the velocity of the phase boundary for c (T  0 - - T . )  

q is of t h e  order of 0.1 t imes the speed of sound. In a polycrystal l ine solid the relaxation zone of a shock wave, whose 
intensity is sufficient for total  melting of the substance, thus has a width of about 10a or less. ( I f ,  as a result of melt ing,  
a two-wave configuration is formed, then this relates to the structure of the second wave. The two-wave configuration 

as a whole will not be stationary, and there is no l imit  on its width. ) 

In conclusion, it should be emphasized again that the above discussion relates to the upper l imi t  of the me l t ing  
t ime .  Actual ly ,  for c (T  0 --T, ,) .~ q the melt ing t ime may be considerably less, since with such strong heating the 
state of the crystal may be close to the border of labi l i ty .  (Molten metals have been supercooled [7] by kT  ~ 0.2 T,. 
In view of the well-known symmetry of the processes of superheating and supercooling, we may expect  superheating of 
the same order under conditions that exclude the surface effect .  Then, however, the nuclei of the new phase stil l  con- 
tain hundreds of molecules [7]. The t ime for these nuclei  to develop [1] under shock melt ing conditions cannot be con- 
sidered infini tely s m a l l .  For this reason, shock melt ing may be nonhomogeneous even for a large degree of superheat-  
ing . )  A second factor, which may acce lera te  the process of melt ing,  is the possible instabil i ty of the plane boundary of 

a superheated crystal,  s imilar  to dendritic solidif icat ion of a supercooled liquid [7], 

REFERENCES 

1. Ya. B. Zerdovich,  "On the theory of new phase formation," Zh. eksperim, i .  teor. f iz . ,  vol. 12, no. 11-12, 

pp. 525-538, 1942. 
2. Progress in Metal  Physics [Russian translation], vols. III and IV, Metathtrgtzdat,  Moscow, 19,59. 
3. Yu. N. Ryabinin, "The effect of pressure on certain properties of solids," Zh. tekh. f iz . ,  vol. 30, no. 6, 

pp. 739-741, 1963. 
4. N. G. Ainslie, 1. D. Mackenzie,  and D. Turnbull, "Melting kinetics of quartz and cristobalite," J. Phys. 

Chem. ,  vol. 65, no. 10, pp. 1718-1724, t961. 
5. L. D. Landau and E. M. Lifschitz, blechanics of Continuous Media [in Russian], Gostekhizdat, p. 248, 1953. 
6. P. Frank and R. blises, Differential and integral Equations of Mechanics and Physics [Russian translation], 

ONTI, 1937. 
7. B. Chalmers,  Physical Metallurgy [Russian translation], Meta th rg izda t ,  Moscow, 19{53. 

23 June 1964 Moscow 

106 


